

Gravitational Waves

Jose María Ezquiaga

Niels Bohr Institute jose.ezquiaga@nbi.ku.dk ezquiaga.github.io

VILLUM FONDEN

[Diego Rivera]

KØBENHAVNS UNIVERSITET

A plethora of cosmological observations

[Gravitational Lensing]

The **standard** cosmological model...

...13.8 billion years of cosmic history

We don't understand the basics of our Universe

Gravitational waves are new cosmic messengers

Gravitational waves from stellar-mass binary black holes

6

Stellar evolution

How, when, where?

*stellar mass binary black holes

Age of the Universe

Gravitational Wave horizons

Age of the Universe

Age of the Universe

The plan

0. Motivation: gravity, astrophysics, cosmology

1. A crash-course on gravitational waves

linearized Einstein's equations, quadrupole formula, compact binary coalescences

2. The new era of gravitational-wave astronomy

detectors, matched-filtering, data analysis, current observations, next generation detectors

3. Standard siren cosmology

bright, dark and spectral sirens, status and future prospects

4. Gravitational wave lensing

lensing regimes (geometric/wave optics), current search efforts, science case

The plan - warm up

- Please, raise your hand if...
 - You are in the *first* year of your PhD
 - In your *second* year?
 - You have studied before a *course* with "gravitational waves" in the title
 - You have published a *paper* with the words "gravitational waves" written somewhere
 - In the *title*?
 - You have already seen the *monkeys* in the hotel :)

The plan - practicalities

- Please ask *questions*! (during and after the lectures)
- The goal of these lectures is to give an *overview* of gravitational wave astronomy and its application to cosmology
 - I will avoid technical derivations. Focus on compact binaries
 - There are many slides. No need to cover them all!
- Detailed derivations can be found in my lecture notes:
 <u>ezquiaga.github.io/lectures/Lecture Notes</u>
 - Also references to seminal papers and books
- The slides contain references [in brackets] with links to papers/sources
 - QR code linking to the slides
- *Remember*, please ask *questions*! (during and after the lectures)

1. A crash-course on gravitational waves

Gravitational waves in flat space

• Perturbations around Minkowski

 $g_{\mu\nu}(t,\vec{x}) = \eta_{\mu\nu} + h_{\mu\nu}(t,\vec{x})$ $|h_{\mu\nu}(t,\vec{x})| \ll 1$

• Einstein field equations

$$R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R = 8\pi G T_{\mu\nu}$$

• Gravitational wave propagation

$$\Box h_{\mu\nu} = -16\pi G \left(T_{\mu\nu} - \frac{1}{2} \eta_{\mu\nu} T \right)$$

Gravitational wave properties

- Wave equation in vacuum $\Box h_{\mu\nu} = 0$
- Wave ansatz $h_{\mu\nu}(x) = \operatorname{Re} \left[A_{\mu\nu}(x) e^{i\theta(x)} \right]$ $k_{\mu} \equiv \partial_{\mu}\theta$ $A_{\mu\nu} \equiv A\epsilon_{\mu\nu}$
- Highly oscillatory phase: $\theta \to \theta / \varepsilon$
- Leading order: gravitational wave follow null geodesics

$$\eta_{\mu\nu}k^{\mu}k^{\nu} = 0$$

• Next to Leading order: *gravitons conserved + parallel transport*

$$\nabla^{\mu}(A^2k_{\mu}) = 0 \qquad \qquad k^{\alpha}\nabla_{\alpha}\epsilon_{\mu\nu} = 0$$

Gravitational wave polarizations

• Counting degrees of freedom:

Symmetric 4D tensor $\epsilon_{\mu\nu} = \epsilon_{\nu\mu}$: 10 Lorenz gauge $\nabla^{\mu}h_{\mu\nu} = 0$: 10 - 4 = 6 Residual gauge $\epsilon_{0\mu} = 0$: 10 - 4 - 4 = 2

• Polarization decomposition:

$$\epsilon_{\mu\nu}(x) = \epsilon_{+}(x)\hat{\epsilon}_{\mu\nu}^{+} + \epsilon_{\times}(x)\hat{\epsilon}_{\mu\nu}^{\times}$$
$$\epsilon_{\mu\nu} = \begin{pmatrix} 0 & 0 & 0 & 0\\ 0 & \epsilon_{+} & \epsilon_{\times} & 0\\ 0 & \epsilon_{\times} & -\epsilon_{+} & 0\\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Gravitational Wave Polarizations

Gravitational waves in curved snace

• Perturbations around curved background

$$g_{\mu\nu} = g^{\rm B}_{\mu\nu} + h_{\mu\nu}$$

• Definition is not unique, short-wave approx.

$$\lambda_{\rm gw} \ll L_{\rm B} \sim |R_{\alpha\beta\gamma\rho}^{\rm B}|^{-1/2}$$

- We can fix the transverse-traceless gauge in vacuum $\nabla^{\mu}h_{\mu\nu} = h = 0$
- Wave equation

$$\Box h_{\mu\nu} + 2R^{\rm B}_{\mu\alpha\nu\beta}h^{\alpha\beta} = 0$$

$$\int \\ \partial g^{\rm B}_{\mu\nu} \qquad \partial \partial g^{\rm B}_{\mu\nu}$$

New interactions!

Gravitational waves in cosmology

• Perturbations around homogeneous and isotropic backgrounds

$$g_{\mu\nu} = g_{\mu\nu}^{\rm FLRW} + h_{\mu\nu}$$

- GWs unambiguously defined + scalar-vector-tensor decomposition
- Wave equation in vacuum

$$\Box^{\text{FLRW}} h_{ij} + 2R^{\text{FLRW}}_{ijkl} h^{jl} = 0$$

$$\downarrow$$

$$h''_{ij} + 2\mathcal{H}h'_{ij} + \nabla^2 h_{ij} = 0$$

$$\downarrow$$

$$h_{ij}(\eta, \mathbf{x}) \simeq \frac{1}{a(\eta)} h^{\text{flat}}_{ij}(\eta, \mathbf{x})$$

Gravitational wave generation

• Different regimes

• Rewriting the field equations:

$$\Box \bar{h}_{\mu\nu} = -16\pi G T_{\mu\nu} + \mathcal{O}(h^2) \equiv -16\pi G \tau_{\mu\nu}$$

• Green's function solution:

 $\bar{h}_{\mu\nu} = h_{\mu\nu} - \frac{1}{2}g_{\mu\nu}h$

$$\bar{h}_{\mu\nu}(t,\vec{x}) = 4G \int d^3x' \frac{\tau_{\mu\nu}(t-|\vec{x}-\vec{x}'|,\vec{x}')}{|\vec{x}-\vec{x}'|}$$

Quadrupole formula

- Far zone solution: *expand large distances*
- Near zone solution: *expand small velocities v/c*
- Leading Newtonian limit: *match near and far zone solutions*

$$h_{ij}^{TT}(t,\vec{x}) = \frac{2G}{c^4r} \frac{d^2Q_{ij}^{TT}(t-r/c)}{dt^2}$$

Amplitude scales

nversely with distance

$$Q^{ij} \equiv \int d^3x \tau^{00}(x) \left(x^i x^j - \frac{1}{3}r^2\delta^{ij}\right)$$

Gravitational waves

sourced by accelerated

quadrupole moment

Compact binary coalescence

• At leading order in post-Newtonian expansion

$$h_{+}(t) = h_{c} \left(\frac{1 + \cos^{2} \iota}{2}\right) \cos\left[\Phi(t)\right]$$

 $h_{\times}(t) = h_c \, \cos \iota \, \sin \left[\Phi(t) \right]$

$$\mathcal{M}_c = (m_1 m_2)^{3/5} / (m_1 + m_2)^{1/5}$$

• Amplitude

$$h_c \sim \frac{\mathcal{M}_c^{5/3} f_{\rm gw}^{2/3}}{r}$$

• Frequency

$$\dot{f}_{\mathrm{gw}} \sim \mathcal{M}_c^{5/3} f_{\mathrm{gw}}^{11/3}$$

 $f_{\rm gw} \sim d\Phi/dt$

Inspiral - the "chirp"

Inspiral-Merger-Ringdown

Numerical simulation of a binary black hole merger

[Credit: SxS Collaboration]

Cosmological compact binary coalescence

• Compact binaries at cosmological distances

$$h_c(t_{\rm obs}) \sim \frac{\mathcal{M}_c^{5/3} f_{\rm gw}^{2/3}}{a(t_{\rm obs}) r} \qquad f_{\rm gw} = (1+z) f_{\rm obs}$$
$$\mathcal{M}_z = (1+z) \mathcal{M}_c$$
$$\mathcal{M}_z = (1+z) \mathcal{M}_c$$
$$h_c(t_{\rm obs}) \sim \frac{\mathcal{M}_z^{5/3} f_{\rm obs}^{2/3}}{d_{\rm L}^{\rm gw}} \qquad d_{\rm L}^{\rm gw} = d_{\rm L}^{\rm em} = a_0 (1+z) \int_0^{z_{\rm src}} \frac{dz}{H(z)}$$

GW's amplitude scale with the inverse of the luminosity distance!

Their amplitude is sensitive to the expansion rate of the Universe!

1. Key takeaways

- Gravitational waves are *linear perturbations* of space-time that propagate across the Universe
- They propagate along *null geodesics* and carry only *two polarizations*
- Gravitational waves are sourced by the second time derivative of the quadrupole moment
- Compact binary coalescences produce sizable gravitational waves with a *chirping* waveform
- On a cosmological background, amplitude scales inversely with the *luminosity distance*

2. The new era of gravitational-wave astronomy

[Credit: R. Hurt, Caltech/MIT/LIGO Lab]

The variation in the distance is minuscule

0.000000000000000000001 meters

atom: 10⁻¹⁰ meters

nucleus: 10⁻¹⁵ meters

GW effect: 10⁻¹⁸ meters

Tuned for detecting compact objects

$$f \sim \frac{1}{2\pi} \frac{1}{2t_{\rm Sch}} \sim 800 {\rm Hz} \left(\frac{10 M_{\odot}}{M}\right)$$

$$h \sim \mathcal{O}(1) \cdot \frac{r_{\rm Sch}}{r} \sim 10^{-23} \left(\frac{1 \,{\rm Gpc}}{r}\right) \left(\frac{M}{10 M_{\odot}}\right)$$

Coincides audible frequencies

Cosmological distance

$$\frac{1 \mathrm{Gpc}}{c} \sim 3 \mathrm{Gyr} \sim 0.2 t_{\mathrm{Uni}}$$

Tuned for detecting compact objects

The era of gravitational wave astronomy is **here**!

[Hanford, US]

[Livingston, US]

[Virgo, Italy]

[KAGRA, Japan]

Gravitational wave detectors

- Detectors are defined by their *noise*, *n*(*t*)
- Some simplifying assumptions:

Stationary:
$$R(\tau) \equiv \langle n(t)n(t+\tau) \rangle$$

Ergodic: $\langle n \rangle = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} n(t) dt$
Zero-mean: $\langle n(t) \rangle = 0$
Gaussian: $\langle \tilde{n}^*(f)\tilde{n}(f') \rangle = \frac{1}{2} S_n(f) \delta(f-f')$

• Probability of noise realization n(t)

$$p_n[n(t)] \propto \exp\left[-2\int_0^\infty \frac{|\tilde{n}(f)|^2}{S_n(f)}df\right]$$

Gravitational wave detectors

• Detectors are also defined by their antenna response

 $h(t) = h_{+}(t)F_{+}(\hat{n}) + h_{\times}(t)F_{\times}(\hat{n})$

Sky localization

• The arrival time difference between two detectors defines a ring in the sky

$$\Delta t_{d_1 d_2} = \vec{n} \cdot \vec{r}_{d_1 d_2} / c$$

Sky localization

• The data stream:

$$d(t) = s(t) + n(t)$$

• Filter data:

$$\hat{d} = \int_{-\infty}^{\infty} dt \, d(t) K(t)$$

- Signal to noise: $S/N = \frac{\int_{-\infty}^{\infty} df \tilde{s}(f) K^*(f)}{\sqrt{\int_{-\infty}^{\infty} df \frac{1}{2} S_n(f) |\tilde{K}(f)|^2}}$
- Define noise weighted diner product

$$(a|b) \equiv \operatorname{Re}\left[\int_{-\infty}^{\infty} \frac{\tilde{a}^*(f)\tilde{b}(f)}{S_n(f)/2}\right] = 4\operatorname{Re}\left[\int_{0}^{\infty} \frac{\tilde{a}^*(f)\tilde{b}(f)}{S_n(f)}\right],$$

write S/N:
$$S/N = \frac{(u|s)}{\sqrt{(u|u)}} \qquad \tilde{u}(f) = \frac{1}{2}S_n(f)\tilde{K}(f)$$

• Rewrite S/N: $S/N = \frac{(u|s)}{\sqrt{(u|u)}}$

• Signal to noise: S

$$S/N = \frac{(u|s)}{\sqrt{(u|u)}}$$

• Optimal filter when u is parallel to s

$$\tilde{K}(f) \propto \frac{\tilde{s}(f)}{S_n(f)}$$

• Optimal signal-to-noise ratio

$$\rho_{\text{opt}}^2 = (h|h) = 4\text{Re}\left[\int_0^\infty \frac{|\tilde{h}(f)|^2}{S_n(f)}\right]$$

Detection statistics

• If we subtract the the right signal to the data, we should recover the noise

$$n(t) = d(t) - s(t)$$

• Assuming Gaussian noise, the likelihood of the data is

$$\Lambda(d|\theta) \propto \exp\left[-\frac{1}{2}(d-h(\theta)|d-h(\theta))\right]$$
$$= \exp\left[(d|h(\theta)) - \frac{1}{2}(h(\theta)|h(\theta)) - \frac{1}{2}(d|d)\right]$$

• The posterior distribution of a parameter (Bayes theorem)

$$p(\theta|d) \propto p(\theta) \exp\left[(d|h(\theta)) - \frac{1}{2}(h(\theta)|h(\theta)) \right]$$

49

Measurement uncertainty

 In the high signal-to-nise limit, inferred parameters are close to the maximum likelihood (ML) value

$$\theta^i = \theta^i_{\rm ML} + \Delta \theta^i$$

Expanding the likelihood around this value (first contribution quadratic)

$$p(\theta|d) \propto \exp\left[-\frac{1}{2}\Gamma_{ij}\Delta\theta^i\Delta\theta^j\right]$$

$$\Gamma_{ij} = (\partial_i \partial_j h | h - s) + (\partial_i h | \partial_j h) \approx (\partial_i h | \partial_j h)$$

• E.g. $\tilde{h}(f) = Ae^{i\phi}$

$$\sigma_{\ln A} = \sigma_{\phi} = 1/\rho$$

Population inference

• The posterior distribution of the hyper-parameters

$$p(\lambda|\{d_i\}) \propto p(\lambda)p(\{d_i\}|\lambda) = p(\lambda) \prod_{i=1}^{N_{obs}} \frac{p_{pop}(\theta_i|\lambda)}{\int d\theta p_{pop}(\theta|\lambda)}$$

• Including selection effects

$$p(\{d_i\}|\lambda) = \prod_{i=1}^{N_{\rm obs}} \frac{p_{\rm pop}(\theta_i|\lambda)p_{\rm det}(\theta_i)}{\int d\theta p_{\rm pop}(\theta|\lambda)p_{\rm det}(\theta)} = \prod_{i=1}^{N_{\rm obs}} \frac{p_{\rm pop}(\theta_i|\lambda)}{\int d\theta p_{\rm pop}(\theta|\lambda)p_{\rm det}(\theta)}$$

• Including measurement uncertainties

$$p(\{d_i\}|\lambda) = \prod_{i=1}^{N_{obs}} \frac{\int d\theta p(\theta|d_i) p_{pop}(\theta|\lambda)}{\int d\theta p_{pop}(\theta|\lambda) p_{det}(\theta)}$$

The era of gravitational wave astronomy is here!

01 2015 - 2016			02 2016 - 2017	- and	-	A.P.		201			03a+0 2019-2020	
и э	23 14	14 2.9	а ас	11 7/5	31. 34	<u>а</u> , н	3 25	н н 16 13	5 7	40 29	88 22	ж. в
63 GWISOM	36 cimiatora	21 GATSTAN	49 CWINSTON	18 силжесе	80 ownorae	56 ownoede	53 cwicoars	<2.8 cm//tem	60 GWEDBEB	65 GW170623	105 CWIEGKGLOFIETS	41 GWIE0FORJETROS
30 8.3	35 24	48 32	4 32	• • 2 14	107	43 28	23 13	36 19	29 28	3 7 25	66 4	95 00
37 5w190402	56 cwmo-ins_csass+	76 Ciango (15, 15450)	70 5'A''90-21,275856	3.2 cw/120425	175 cw/80436,130642	69 cxv100603,185404	35 Sw190582_190714	52 cw/100513_205428	65 cw/mc514_065416	59 GW-9097,05901	101 CW190589,155544	155 cw190628
42 38	37 ZI	99 4 8	57 36	35 24	54 41	67 38	12 8.4	IB 13	E7 21	13 78	12 64	38 29
71 GW-90561-074222	56 cwecsar.canes	111 CW190682-179525	87 CWR53620-030421	56 CWD3630 185405	90 GWE 0701 203306	99 GWD5706 225641	19 GW130707.093536	30 64/1900/06-2524-07	55 GW10010-28514	20 5w190750.000896	17 GWIE0725-74728	64 GW130727-000538
12 8'	42 29	37 27	44	23 26	32 26	24 10	44	35 24	44 24	93 21	8.9 5	2 16
20 cw/90728,064510	57 04/190731_040636	62 (W190805,02270)	76 GW180605_20057	25 cw15084	55 54/190618_0654-05	33 GW130525_065529	75 5w19080_83607	57 CV/ISCM5,225702	65 cw150616_200655	11 Gw190967,04630	13 04/190634_021646	35 GW190221_222545
40 25	• • •	12 X.S		 11 V9	as 47	29 50	12 8.4	0 13 - 24	11 67	27 19	12 82	25 10
61 CWP0396_CS0756	102 SW190529_07545	19 swiects_tarset	19 GW15101_012549	18 cwmmes_143721	107 awn@tes_mezir	34 awarina,amaa	20 cwmit2f_115254	76 5w19077_550277	17 CW198129_114029	45 54/14/204_00529	19 SW19204_131526	4] (%)975_72952
12 2.7	31 1.3	• • •5 35	49 57	p 19	36 28	53 14	42 33	34 29	10 7.3	38 77	51 12	35 77
19 cwielaie_addae	32 CW194216_043120	76 GW19622_039537	82 SW198350_160456	n Cwcource, iear ae	61 Gwacong_reese	7.2 GW20015_012805	71 сиссован, ексет	60 SW200129,066158	17 GWG00306_15/318	63 CW000306_J30117	51 5w200208,22260	60 54/2002/0054/50
0 24 2.8	9 • • 51 _ 30	38 28		39 28	40 33	19 14	38 20	28 15	36 14	34 28	15 7.8	34 14
27	78	62 CHOODER 20435	141	64	69 54/20/2014 222234	32 currentitic control	56	42	47	59	20	53

GWTC-3 population

O4 is happening!

https://gracedb.ligo.org/superevents/public/O4/#

Gravitational Waves

DAY 2

Jose María Ezquiaga

Niels Bohr Institute jose.ezquiaga@nbi.ku.dk ezquiaga.github.io

[Diego Rivera]

Please log in to view full database contents.

LIGO/Virgo/KAGRA Public Alerts

- More details about public alerts are provided in the LIGO/Virgo/KAGRA Alerts User Guide.
- Retractions are marked in red. Retraction means that the candidate was manually vetted and is no longer considered a condidate of interest.
- Less-significant events are marked in grey, and are not manually vetted. Consult the LVK Alerts User Guide for more information on significance in O4.
- Less-significant events are not shown by default. Press "Show All Public Events" to show significant and lesssignificant events.

O4 Significant Detection Candidates: 167 (186 Total - 19 Retracted)

O4 Low Significance Detection Candidates: 2839 (Total)

Show All Public Events

Page 1 of 13. next last »

SORT: EVENT ID (A-Z)

Event ID	Possible Source (Probability)	Significant	UTC	GCN	Location
S241201ac	BBH (97%), Terrestrial (3%)	Yes	Dec. 1, 2024 05:57:58 UTC	GCN Circular Query Notices VOE	

The **future**: "big data" & distant Universe

[XG = next-generation detector = Cosmic Explorer / Einstein Telescope]

[Chen, Ezquiaga & Gupta (CQG'24)] 59

2. Key takeaways

- Gravitational waves detectors are describes by their *noise* and *antenna pattern* function
- The *optimal signal to noise* is given when the filter matches the signal
- Data stream can be *matched filtered* using a template bank. An event is found when it cannot be explained by noise background
- Once an event is detected, we can infer the parameters. This is a 15D parameter space
- Almost 300 significant candidates since the first observation.
 Many more to come in the *future*!

3. Standard siren cosmology

[general relativity predicts waveform]

[general relativity predicts waveform]

 $h_c(t_{\rm obs}) \sim \frac{\mathcal{M}_z^{5/3} f_{\rm obs}^{2/3}}{d_{\rm T}^{\rm gw}}$

[general relativity predicts waveform]

strain

frequency

[general relativity predicts waveform]

[GW Hubble diagram]

$$m_{\rm det} = (1+z)m$$

[Interplay with astrophysics]

time

BRIGHT SIRENS

- Redshift from electromagnetic counterpart (e.g. identifying host galaxy)
- <u>GW170817</u>
- Need matter around merger: neutron stars!, AGN?
- Bright counterpart at high-z?

Bright sirens

Inclination matters [recall Enrico's talk]

[Nature 551, 85 (2017)] **70**

Solve Hubble tension?

[Ezquiaga & Zumalacárregui '18] **71**

Where are the binary neutron stars?

- <u>O1-O2 BNS rate</u>: **110** 3840 / Gpc³ / yr (90% CI for 1 model)
 - Confident BNS: GW170817
- <u>O3a BNS rate</u>: 80 810 / Gpc³ / yr (90% CI for 1 model)
 - Confident BNS: GW190425
- <u>O3a BNS rate</u>: **10** 1700 / Gpc³ / yr (90% CI across 3 models)
 - Confident BNS: None
- <u>O4 significant BNS candidates so far</u>: **0**?

Predictions for O4: $7.7^{+11.9}_{-5.7} \text{yr}^{-1}$ BNS[2204.07592]74% kilonova, 2% GRB
Neutron star - black hole mergers to the rescue?

LIGO-Virgo-KAGRA | Aaron Geller | Northwestern

LVK Black Holes LVK Neutron Stars EM Black Holes EM Neutron Stars

Neutron star - black hole mergers to the rescue?

If too asymmetric neutron star is quickly eaten...

Higher modes to break

distance degeneracies!

74

DARK SIRENS

- Statistically infer z from galaxies in localization volume
- E.g. <u>GW170814</u>
- Need good localization and complete galaxy catalogs!

For more details see: Hitchhiker guide GW galaxy catalog cosmo (<u>arXiv 2212.08694</u>)

Do binary black holes trace the large scale structures?

Gravitational waves are standard sirens

[general relativity predicts waveform]

SPECTRAL SIRENS

$$\{d_L(z), m_{det} = (1+z)m\}$$

SPECTRAL SIRENS

All compact binaries are standard sirens, no electromagnetic information is necessary

Ezquiaga & Holz; Spectral sirens: Cosmology from full mass distribution of compact binaries (PRL'22, arXiv 2202.08240)

All compact binaries are spectral sirens, no electromagnetic information is necessary

Currently, binary black holes most promising

Non-parametric reconstruction

Unbiased cosmological inference *without* prior assumptions

[Farah et al.; ApJ'24]

Standard sirens: *current results*

88

Standard sirens: forecasts

Bright sirens at higher distances

• If the Dark Energy equation of states evolves in time

$$\Omega_{\rm DE}(z) = \Omega_{\Lambda} (1+z)^{3(1+w_0)} e^{-3\int_0^z \frac{w(z') - w_0}{1+z'} dz'}$$
$$d_{\rm L}^{\rm gw} = a_0 (1+z) \int_0^z \frac{dz'}{H_0 \sqrt{\Omega_{M,0} (1+z')^3 + \Omega_{\rm DE}(z')}}$$

H₀ (also) with dark sirens

H: Hanford (US)L: Livingston (US)A: Aundha (India)ET: Einstein Telescope (EU)CE: Cosmic Explorer (US)

[Chen, Ezquiaga & Gupta (CQG'24)] 91

Spectral sirens: forecasts

[BBHs between NSBH and PISN gap]

2G: <10% within 1 year at approx. z=0.7
3G: Sub-percent within 1 month. High-redshift!</pre>

Expansion rate at high redshift H(z)

Combining sirens **sub-percent** precision across cosmic history!

LISA forecasts: super massive BBHs

[approx. 10-30 **bright sirens** (4 yrs)]

[LISA Cosmo White Paper] 96

3. Key takeaways

- Gravitational waves carry information about their *luminosity distance* and *redshifted masses*
- With a direct additional information on redshift we have a *bright* siren. Using a galaxy catalog we have a *dark siren*
- Cosmology and astrophysics can be inferred simultaneously using the *spectral siren* method
- Current constraints dominated by *GW170817*. Spectral siren allow to look further.
- In the future, constrain H(z) at high redshift!

4. Gravitational wave lensing

Gravitational waves are *only* altered by **gravitational interactions** with cosmic structures

Gravitational lensing gravitational wave spectrum

Repeated chirps due to strong lensing

Waveform *distortions* by substructures

Source Lens Detector

Gravitational lensing electromagnetic spectrum

[multiple images]

[arcs and rings]

Gravitational lensing

• Solve GW propagation on a curved background

$$\Box \bar{h}_{\mu\nu} + 2\bar{R}_{\alpha\mu\beta\nu}\bar{h}^{\alpha\beta} = 0$$

• We want to make a mapping between the source and the observer through the lens

Gravitational lensing

- Solve GW propagation on a curved background
- Within *weak-gravity* & *thin lens* approximations, in *Fourier* space:

$$h_L(\omega) = F(\omega, \theta_S) \cdot h(\omega)$$

$$F(\boldsymbol{w}, \vec{y}) = \frac{\boldsymbol{w}}{2\pi i} \int \mathrm{d}^2 \boldsymbol{x} \, \exp[i\boldsymbol{w}T_d(\vec{x}, \vec{y})]$$

[Dimensionless variables] $\vec{x} \equiv \vec{\theta}/\theta_*$, $\vec{y} \equiv \vec{\theta}_S/\theta_*$, $w \equiv \tau_D \theta_*^2 \omega$ $T_d \equiv t_d/\tau_D \theta_*^2$ $\tau_D \equiv (1+z_L)D_L D_S/cD_{LS}$ MMm 7 2

Stationary Phase Approximation

• Solve integral in the limit of highly oscillatory integrand

$$F(w, \vec{y}) = \frac{w}{2\pi i} \int d^2 x \, \exp[iwT_d(\vec{x}, \vec{y})]$$

• Stationary points define the images:

$$\frac{\partial t_d}{\partial \theta_a} \bigg|_{\vec{\theta} = \vec{\theta}_j} = 0$$

$$T_d(\vec{\theta}) \approx T_d(\vec{\theta}_j) + \frac{1}{2} \sum_{(a,b)=1}^2 \delta\theta_a \delta\theta_b \frac{\partial^2 T_d(\vec{\theta}_j)}{\partial\theta_a \partial\theta_b} + \cdots$$

• Hessian matrix determines magnifications

$$\mu(\theta_j) = 1/\det(T_{ab}(\theta_j))$$

$$T_{ab} \equiv \tau_D^{-1} \partial^2 t_d / \partial \theta_a \partial \theta_b$$

Strong lensing $\Delta t_d \cdot \omega \gg 1$ $h_L(\omega) = F(\omega, \theta_S) \cdot h(\omega)$ $F \approx \sum_j |\mu_j|^{1/2} \exp(i\omega t_j - i\pi n_j)$ Magnif
Time
Phase

Magnification Time delay Phase shift

• Each image type (I, II and III) acquire a different phase shift

Precise timing

Waveform distortions in type II images

• Lensing imprints *small* but *characteristic* modifications in the signals that cannot be mapped to other astrophysical parameters

[Ezquiaga et al.; PRD'20] 109

Searching for repeated chirps

Searching for repeated chirps

 $N_{\rm false\,alarm} \sim N^2$

[*<u>Çalışkan</u>, Ezquiaga, Hannuksela and Holz; PRD'22] 111*

Fight false alarms: phase consistency

[Ezquiaga, Hu, Lo; PRD'23]

Fight false alarms: phase consistency

Wave optics

• Time delay scales with the lens mass

$$\Delta t_d(y=1) \simeq 4 \left(\frac{(1+z_L)M_L}{100M_{\odot}} \right) \text{ ms}$$
 [point mass lens

• GW frequency scales with binary mass (has astrophysical size!)

$$f \sim \frac{1}{2\pi} \frac{1}{2t_{\rm Sch}} \sim 800 {\rm Hz} \left(\frac{10 M_{\odot}}{M}\right)$$

- Wave optics regime: $\Delta t_d \cdot \omega \sim 1$
- Low-frequency limit has small lensing $\omega
 ightarrow 0 \implies F
 ightarrow 1$

Wave optics: diffraction

Searching for distorted lensed GWs

• Highly distorted waveforms could be missed by current searches

117

False violations of general relativity

 Lensed waveforms can be different from (unlensed) general relativity waveforms

118

Gravitational wave lensing: expanding *horizons*

[Xu, Ezquiaga, Holz; ApJ'21]

[Lo, Vujeva, Ezquiaga, Chan; 2024]

Increased optical depth in wave optics

[<u>Çalışkan</u> *et al.;* PRD'23] **121**

4. Key takeaways

- Gravitational waves are *only* altered by *gravitational interactions* with cosmic structures
- Strong lensing may produce *repeated chirps*. Searching for them is difficult, but first detections is around the corner
- Gravitational waves may be diffracted by cosmic structures producing *distorted waveforms*. This is unique!
- There are other unique observational signatures as phase shifts in *type II images*
- Lensed gravitational waves can probe small *compact lenses* and *dark matter subhalos*

Conclusions

Gravitational waves are precious cosmological probes:

- Well understood signals from general relativity
- Coherent detection of waveform
- Expansion rate at high redshift H(z) with binary black holes mergers
- Probing origin of the observed black holes and dark matter substructures via lensing
- Future of gravitational wave astronomy is exciting.
 Join us!

There are MANY other things I did not have time to cover:

- cross correlations with other surveys
- stochastic
 backgrounds
- neutron star equation of state
- tests of gravity

Muchas gracias!

Medfinansieret af Den Europæiske Unions Connecting Europe-facilitet

Join us!

VILLUM FONDEN

ezquiaga.github.io/joinus

