

Gravitational Wave Lensing: Current Searches and Future Prospects

Jose María Ezquiaga

Niels Bohr Institute jose.ezquiaga@nbi.ku.dk ezquiaga.github.io

VILLUM FONDEN

KØBENHAVNS UNIVERSITET

[Gustav Klimt]

Gravitational waves are new cosmic messengers

Gravitational waves from stellar-mass binary black holes

3

*stellar mass binary black holes

Age of the Universe

Gravitational Wave horizons

Age of the Universe

Gravitational Wave horizons

Age of the Universe

The era of gravitational wave astronomy is **here**!

[Hanford, US]

[Livingston, US]

[Virgo, Italy]

[KAGRA, Japan]

7

The era of gravitational wave astronomy is here!

01 2015 - 2016	···		02 2016 - 2017	- ants	-	dist.		1			03a+0 2019 - 2020	
	23 14	14 2.2	а а	1 95	а , м	ы. н	• •	10 13 16 13		40 .20	88 22	25 18
63 GW15091	36 comisiona	21 GATST235	49 CWINCION	18 CWITZBECE	8C Contraction	56 cwrixiaece	53 CWIDORIS	≤2.8 cw//osn	60 cveccera	65 ownees	105 owieokoslosiery	41 CWIEGHORJE BOS
30 8.3	35 24	48 32	4 32	• • 2 14	17	43 28	23 13	36 19	39 28	3 7 25	66 4	5.00
37 Gw19040	56 cwreo-ris_cssss-	76 Giango 75, 134508	70 5%*90-121_215854	3.2 ctv/180435	175 CW180436_180642	69 cxvrscecs_*es+o+	35 SW190592_150714	52 GW180513,205428	65 CTV/79/0514_065416	59 GW-90907_059001	101 CW1905H9,158544	156 cwtexta
42 38	37 25	55 4 8	57 . 56	35 24	54 41	67 38	12 8.4	IB 13	3 7 21	13 78	12 64	38 29
71 SW-90551-0745821	56 cwecszi cenes	III CW190688 172527	87 CWEI3639 030421	56 CW03689 185405	90 GWE0701-205906	99 GWD3706 25641	19 GW108785-095535	30 GW190008-235407	55 GW10010 28:14	20 SW190750 0C0896	17 GWID0725-194738	64 GW130727 000534
12 61	12 29	37 27	40 53	23 26	32 26	24 10	·· · 36	35 24	44 24	82 51 •	8.9 5	2 16
20 cw/#07728,064510	57 54/190731_140636	62 cw190803,082701	76 cwite6c5_20057	28 cw190844	55 54/190518_065405	33 GW180825,068509	75 544190900_83807	57 CW18CM5,225702	65 ovrisosi6,200655	11 Swiecer.,14630	13 04/190624_021645	35 GW190825_282545
40 25		12 3.0	1 2 V.9	n va	× *	29 50	12 81.4		11 627	27 19	12 82	25 10
61 cwmc396_csome	102 SW190329_00764	19 5w190630_33564	19 GWIETEN1_012549	18 .cwmmes_143321	107 civinitine_me.707	34 awayina,awaya	20 cwmiii2f_115253	76 GWTMI27_050727	17 CW19829_114029	45 54/98264_00529	19 GM/M204_07576	41 (%)9175_727652
12 7.7	31 1.3	4 0 35	49 57	2 19	34 28	50 14	a	34 29	10 7.5	38 27	5 12	36 77
19 GW191216_200338	32 CW194719_3437.20	76 SW19632_03857	82 SW198250_160456	n Cwccolics, iear ae	61 Gwacong_reese	7.2 GW20015_012805	71 сизостанцовает	60 Swi200129,065158	17 GW200305_154313	63 cwccoace_130177	51 5W200208,222667	EO Swecosof.cass452
0 24 2.8	51 0 30	38 2 8	87 0 0	³⁹ 28	40 33	ю ч	38 20	28 15	36 14	34 . 28	15 78	34 14
27	78	62 CW200513 206475	141 GW200250 001920	64 (W200220 124020	69 0w201224 222234	32 GW20C225 (CD42)	56 (webere mem	42 SW200306 007774	47 Gw200300 103640	59 6w20030 US073	20 (W60016 21577.6	53 (WS00322 051133

GRAVITATIONAL WAVE MERGER DETECTIONS

O4 is happening!

https://gracedb.ligo.org/superevents/public/O4/#

Yes

Gravitational wave lensing:

First detection approaching, expanding horizons

The plan

[this is an overview. Ask the experts in the room!]

- **0.** Motivation: gravity, astrophysics, cosmology
- 1. Gravitational waves are Standard Sirens

Waveforms from first principles, understood selection function

The diffraction integral, stationary phase approximation, repeated gravitational wave chirps

3. Current searches

Multiple chirps, distorted waveforms, type II events, highly magnified gravitational waves

4. Future prospects

Substructure, multi-messenger & wave optics, source & lens populations, false violations of general relativity

[ezquiaga.github.io/slides/ ezquiaga_vienna_24.pdf]

[general relativity predicts waveform]

[general relativity predicts waveform]

 $h_c(t_{\rm obs}) \sim \frac{\mathcal{M}_z^{5/3} f_{\rm obs}^{2/3}}{d_{\rm r}^{\rm gw}}$

[general relativity predicts waveform]

strain

frequency

[general relativity predicts waveform]

 $d_L(z)$

[GW Hubble diagram]

$$m_{\rm det} = (1+z)m$$

[Interplay with astrophysics]

time

Gravitational waves are *only* altered by **gravitational interactions** with cosmic structures

2. A crash-course on gravitational lensing

Gravitational lensing electromagnetic spectrum

[multiple images]

[arcs and rings]

For more details see: ezquiaga.github.io/lectures/Lecture_Notes.pdf

Gravitational lensing

• Solve GW propagation on a curved background

$$\Box \bar{h}_{\mu\nu} + 2\bar{R}_{\alpha\mu\beta\nu}\bar{h}^{\alpha\beta} = 0$$

• We want to make a mapping between the source and the observer through the lens

Gravitational lensing

- Solve GW propagation on a curved background
- Cosmological background + *gravitational potential*

$$ds^{2} = a(\eta)^{2} \left(-(1+2\Phi)d\eta^{2} + (1-2\Phi)d\vec{x}^{2} \right)$$

• Focus on *weak-field* limit

$$\Phi \sim r_{\rm Sch}/r \ll 1$$

• Equations simplify, same propagation for both *polarizations*

$$\nabla^2 h_{\mathbf{A}} - (1 - 4\Phi)\partial_0^2 h_{\mathbf{A}} = 0$$

[see Cusin's and Motohashi's talks for spin effects] 21

Gravitational lensing

• Within *weak-gravity*, solve in *Fourier* space:

$$\left(\nabla^2 + \omega^2\right)\tilde{h}_{\mathcal{A}} = 4\Phi\omega^2\tilde{h}_{\mathcal{A}}$$

E Mm

 $R_L \ll D_L, D_{LS}$

- For cosmological lenses, impose *thin lens* approximation.
- Integral solution: $h_L(\omega) = F(\omega, \theta_S) \cdot h(\omega)$

$$F(\boldsymbol{w}, \vec{y}) = \frac{\boldsymbol{w}}{2\pi i} \int \mathrm{d}^2 \boldsymbol{x} \, \exp[i\boldsymbol{w}T_d(\vec{x}, \vec{y})]$$

[Dimensionless variables] $\vec{x} \equiv \vec{\theta}/\theta_*$, $\vec{y} \equiv \vec{\theta}_S/\theta_*$, $w \equiv \tau_D \theta_*^2 \omega$ $T_d \equiv t_d/\tau_D \theta_*^2$ $\tau_D \equiv (1+z_L)D_L D_S/cD_{LS}$

Gravitational lensing

$$h_L(\omega) = F(\omega, \theta_S) \cdot h(\omega)$$

$$F(\boldsymbol{w}, \vec{y}) = \frac{\boldsymbol{w}}{2\pi i} \int \mathrm{d}^2 \boldsymbol{x} \, \exp[i\boldsymbol{w}T_d(\vec{x}, \vec{y})]$$

Stationary Phase Approximation

• Solve integral in the limit of *highly oscillatory* integrand

$$F(w, \vec{y}) = \frac{w}{2\pi i} \int d^2 x \, \exp[iwT_d(\vec{x}, \vec{y})]$$

• Stationary points define the images:

$$\frac{\partial t_d}{\partial \theta_a}\Big|_{\vec{\theta}=\vec{\theta}_j} = 0$$

$$T_d(\vec{\theta}) \approx T_d(\vec{\theta}_j) + \frac{1}{2} \sum_{(a,b)=1}^2 \delta\theta_a \delta\theta_b \frac{\partial^2 T_d(\vec{\theta}_j)}{\partial\theta_a \partial\theta_b} + \cdots$$

• Hessian matrix determines magnifications

$$\mu(\theta_j) = 1/\det(T_{ab}(\theta_j))$$

$$T_{ab} \equiv \tau_D^{-1} \partial^2 t_d / \partial \theta_a \partial \theta_b$$

Multiple chirps

$$\Delta t_d \cdot \omega \gg 1$$

$$h_L(\omega) = F(\omega, \theta_S) \cdot h(\omega)$$
$$F \approx \sum_j |\mu_j|^{1/2} \exp\left(i\omega t_j - i\pi n_j\right)$$

Magnification Time delay Phase shift

• Lensed signals acquire a different phase shift

$$n_j = 0, 1/2, 1$$

type I
type III
[source] [image]

3. Current searches

Gravitational lensing gravitational wave spectrum

Repeated chirps due to strong lensing

Waveform *distortions* by substructures

Lens

Source

etector

Repeated chirps due to strong lensing

• The properties of the *j*-th chirp

$$\begin{split} d_L^j &= d_L / \sqrt{|\mu_j|} & t_{\rm ref}^j &= t_{\rm ref} + \Delta t_j \\ m_{\rm det}^j &= m_{\rm det} & \phi_{\rm ref}^j &= \phi_{\rm ref} - \pi/2 \end{split}$$

• If not identified as lensed, a *magnified* events appears *closer* and *more massive*

$$m_{
m src}^j = m_{
m det}/(1+z(d_L^j))$$
 [see Chen's talk]

Precise timing

Searching for repeated chirps

Searching for repeated chirps: false alarms

 $N_{\rm false\,alarm} \sim N^2$

[*<u>Çalışkan</u>, Ezquiaga, Hannuksela and Holz; PRD'22] 33*

Searching for repeated chirps

- Given the large number of pairs, need quick methods to identify promising pairs
- Compute the posterior overlap

[Haris et al.; 2018]

• Use machine learning (ML) summary statistic

[Goyal et al.; 2021]

[see Li's talk]

Fight false alarms: phase consistency

[**Ezquiaga**, Hu, Lo; PRD'23] **35**

Fight false alarms: phase consistency

Joint parameter estimation

- Infer the parameters of the source under the *lensing hypothesis* using data from *multiple* events
- Allows for Bayesian model comparison
 - Measure consistency of events: coherence ratio (C^{L}_{U})
 - With source/lens populations priors, compute Bayes factor (B^L_U)

[Janquart et al.; golum] [Lo & Magaña; hanabi]37

Sub-threshold searches

- Demagnified events could be under the noise (sub-threshold event)
- *Targeted* searches following super-threshold events reduce template bank and increase sensitivity

GWTC-3 results

• No evidence of repeated chirps in the data

[LVK lensing GWTC-2] [LVK lensing GWTC-3] 39

GWTC-3 results

• Upper bound on binary black hole merger rate

[LVK lensing GWTC-2] [LVK lensing GWTC-3]₄₀

Phase shifts & higher modes

• A gravitational wave is a superposition of *frequency modes*

$$h = \sum_{\ell,m \ge 0} \mathcal{A}_{\ell m} \cos[m(\Omega \Delta t + \varphi_c) - \chi_{\ell m}]$$

• A lensed signal of type I has different amplitude and arrival time

$$h_{\mathrm{I}} = \sum_{\ell,m\geq 0} |\mu_{\mathrm{I}}|^{1/2} \mathcal{A}_{\ell m} \cos[m(\Omega \Delta t_{\mathrm{I}} + \varphi_c) - \chi_{\ell m}]$$

• A lensed signal of **type II** has also a **phase shift**

$$h_{\mathrm{II}} = \sum_{\ell,m\geq 0} |\mu_{\mathrm{II}}|^{1/2} \mathcal{A}_{\ell m} \cos\left[m\left(\Omega\Delta t_{\mathrm{II}} + \varphi_c\right) - \chi_{\ell m} + \frac{\pi}{2}\right]$$

[Dai & Venumadhav; 2017] [Ezquiaga et al.; PRD'20] 41

Waveform distortions in type II images

• Lensing imprints *small* but *characteristic* modifications in the signals that cannot be mapped to other astrophysical parameters

Caustics

• For point sources, there are singular points in the lens mapping

$$\det\left(\frac{\partial^2 T_d(\theta_j)}{\partial \theta_a \partial \theta_b}\right) \to 0 \quad \Rightarrow \mu(\theta_j) \to \infty$$

Caustics exhibit *universal* behaviors (described by catastrophe theory)

$$\mu_{\pm} \sim 1/\sqrt{\Delta\theta_{\rm S}} \sim \Delta t^{-1/3}$$

- SPA is broken when approaching to a caustic
- Maximum magnification set by diffraction

Approaching a (fold) caustic

[galaxy lens with a cored singular isothermal ellipsoid density profile]

[Lo, Vujeva, Ezquiaga, Chan; 2024] 44

Highly magnified, overlapping signals

Rico Lo (NBI)

Wave optics

• Time delay scales with the lens mass

$$\Delta t_d(y=1) \simeq 4 \left(\frac{(1+z_L)M_L}{100M_{\odot}} \right) \text{ ms}$$
 [point mass lense

• GW frequency scales with binary mass (has astrophysical size!)

$$f \sim \frac{1}{2\pi} \frac{1}{2t_{\rm Sch}} \sim 800 {\rm Hz} \left(\frac{10 M_{\odot}}{M}\right)$$

- Wave optics regime: $\Delta t_d \cdot \omega \sim 1$
- Low-frequency limit has small lensing $\omega
 ightarrow 0 \implies F
 ightarrow 1$

Wave optics: diffraction

[see Ubach's talk]

 Most lens models require solving the diffraction integral numerically. Great recent progress [see Villarubia-Rojo's talk]

Parameter estimation of lensed signals

- Include lensed parameters in the inference
- Requires efficient models for the computation of the amplification function.
- Allows to make Bayesian model comparison (B^L_U)

 Addressing possible *waveform systematics* and *noise artifacts* is crucial!

[Janquart et al.; MNRAS'23]

GWTC-3 results

• No evidence of distorted waveforms by lensing ("microlensing")

[LVK lensing GWTC-2] [LVK lensing GWTC-3]50

GWTC-3 results

• Upper bound fraction of compact lenses (w.r.t. dark matter)

[LVK lensing GWTC-2] [LVK lensing GWTC-3]51

Searching for lensed GWs

• Distorted waveforms could be missed by current searches! Juno Chan (NBI)

4. Future prospects

Substructures

• Gravitational waves are effectively point sources. They are very sensitive to *small scales*

V.S.

[Singular Isothermal Sphere]

Substructures - clusters

[<u>Vujeva</u>, **Ezquiaga**, Lo, Chan; *to appear*] **55**

Substructures - clusters

 In real clusters, relative magnifications and time delays
 Luka Vuje change dramatically compared to singular isothermal sphere (SIS)

[<u>Vujeva</u>, **Ezquiaga**, Lo, Chan; *to appear*] **56**

Substructures - subhalos

- Dark matter halos are made of smaller halos
- Gravitational waves could interfere!

ւուհուհուհուհուհու

 $\lambda_{\rm gw} \sim 10^3 {\rm km} \left(\frac{M_{\rm bbh}}{10 M_{\odot}} \right)$

[see Goyal's talk]

Substructures - subhalos

• Sensitive to lensing beyond the Einstein radius!

[<u>Çalışkan</u> et al.; PRD'23] 58

Highly magnified gravitational waves

- Substructures can enhance high magnification tail
- Even more sensitive to small lenses close to the caustics!

[<u>Vujeva</u>, **Ezquiaga**, Lo, Chan; *to appear*]

[Lo, Vujeva, Ezquiaga, Chan; 2024]

Multi-messenger lensing

• Observe multi-messenger lensed events, e.g. *binary neutron stars* with ground-based or *super-massive black hole binaries* with LISA

[see Smith's talk]

- Great target for future detectors!
- Will open many science cases

Multi-messenger lensing & wave optics

• Gravitational waves and photons could suffer lensing in different regimes

• *Phase* and *group velocity* may change in wave optics

$$t_p(\omega, \vec{\theta}_S) = -\frac{i}{\omega} \ln \left(\frac{F(\omega, \vec{\theta}_S)}{|F(\omega, \vec{\theta}_S)|} \right).$$

$$t_g(\omega, \vec{\theta}_S) = t_p(\omega, \vec{\theta}_S) + \omega \frac{\partial t_p(\omega, \vec{\theta}_S)}{\partial \omega}$$

[Ezquiaga, Hu and Lagos; PRD'20] 61

Multi-messenger lensing & wave optics

• There is an *apparent superluminality* due to the waveform distortions

[**Ezquiaga**, Hu and Lagos; PRD'20] **62**

Multi-messenger lensing

- Cross match GWs with lens catalogs
- Identify lensed host galaxy (*difficult!*)
- Watchlist for efficient lenses

Luka Vujeva (NBI)

https://github.com/lenscat/lenscat 63

GW lensing with next-generation detectors

• Large number of detections enable statistical studies

Populations & Cosmology

• Rates and time delay distributions inform about populations

- [<u>Xu</u>, **Ezquiaga**, Holz; ApJ'21]
- If you know the source and lens populations, rates and time delay distributions inform about cosmology [see Ajith's talk]

False violations of general relativity

 Lensed waveforms can be different from (unlensed) general relativity waveforms

66

Conclusions

Gravitational waves are precious cosmological probes:

- Well understood signals from general relativity
- Coherent detection of waveform
- Only distorted by gravitational lensing
- Current searches focus on repeated chirps and distorted waveforms
- No evidence so far, but first detections is approaching!
- Probing origin of the observed black holes and dark matter substructures with gravitational wave lensing

Medfinansieret af Den Europæiske Unions Connecting Europe-facilitet

Join us!

VILLUM FONDEN

ezquiaga.github.io/joinus

